

The Beverage Industry

- internal training

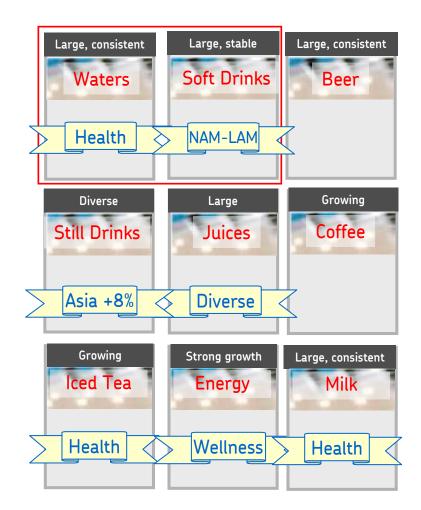
Internal only

Content

The beverage Industry

- Industry, Trends and Drivers
- Industry regulations and guidelines
- Competitive landscape
- Key players
- SKF Market potential

- 2. Beverage process
- Assets, Functions, Issues and Capabilities
- 3 Hygiene and Automation
- 4 Process approach
- **5** Segment and Contacts



The Beverage Industry

Large, stable with consistent process

- Non-cyclical, one of largest manufacturing sectors, high portion people employed and consistent process. 15% of F&B Industry turnover in Europe *
- Non Alcoholic Beverages: Largest category in Food Industry, stable with CAGR 6% ** and specific products growing +10-50%
- Alcoholic Beverages: 2nd Largest category in Food Industry, stable with CAGR 4% **
- AM: Top 100; multi-producers, 23% in beverage
- OEM: Few large F&B OEMs. Smaller companies served by D/Ds

CAGR – Compound Annual Growth Rate * Source CIAA F&B Report 2007

** Source AC Nielsen - Executive News report Dec. 2006

Beverage industry trends and drivers

Pressure for efficiency

Price pressure, globalization, innovation cost

Hygiene regulation

Global ISO22000 and HACCP drive need for hygienic design

Increased outsourcing and automation

Maintenance, engineering, sanitation

Energy, lubrication management and safety;

Focused areas for producers

Engineering skills eroding

Difficulty to maintain engineering skills

 Improved line efficiency, flexibility & Product line performance

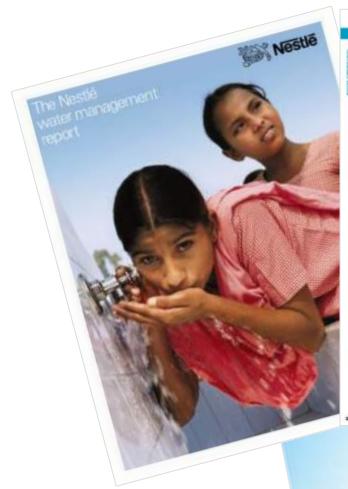
Improve foreign body prevention & Good manufacturing practices (GMP)

Improve people safety

Reduce waste

Water Savings

Energy Savings


SKF's

Sustainable production

Sustainability

A major concern in beverage industry

ECO-EFFICIENCY

Returned to impact of our own

mendaturng spendon - expeditions

is a core part of too microscopic drawings De approach is waite propertily nor

producerental management system artistric based on CO 14003. An operated intersect in

the senting and instituting of ranges for not trap performance indicators (60%)

Every power and collect date from marked and

manufacturing simust key measure of endromenal poliumanos. This is culated and analysed using at minimum real performance reporting system. Over the past 1.2 years are than continuely regressed the may are suffers and report state, more

ments finally the resolution of a molbased report to propose

During 2006 we control but largely

specifican flow on disense suggest demand (CCD) and hosenflow made.

With our performance on househore

problems target of a 11.0% reduction

Uniform & Ballety and Treatment training course throughout our business. Phone selector distinct book, trackrologues and personal directly to the people requestion for reducing the enveronmental impact of no manufacturing operation, Chopse

We aim to improve the eco-efficiency of our manufacturing operations, minimising both resources used and waste created.

	M1101	-CANADOOM	100
Water	1236	6.0-	***
tiong:	100	AP	700
Ci fee sing	10	434	799
Britor Million Sile	3.00	1889	THE
Service of the marks	8.0-	18.00	West
Section water	16.00	2.14	-
Disease ingge depends 900	1.5%	-170	-

Barbartion in least par terms of products 2008–2006 and our tempers for 2011

half in Brasil and Aurops, in 2004 frequent or minimizing wards, were and energy The course has proved permissionly effective

in promoting good practical across our spanishme. To support this, we developed a prachable web-point with over 200 transfer of good profee coming make basis storing, COS and grades

standards of environmental consupercent, positions constricted possess filt insertion and record out all recommendate property and endowenessi organismos. The figures shown in the table upon tap manufacts sincial filtra preferencein part comments from offices and research Management (eight). In 2008 these was potromical union for

hand per turner of production 2002-2005

Territorio .			200
GREAT	440	1.79	140
Temporal meter by	444	2.00	4.00
bon instaction leader by	***	**	140
Period of	419	200	1.00
twyt-	10	140	1.00
Chinawaya	W.T	01.8	98.00
Seem falleton (Corne	428	821	
man of the state	100		

	70.5	Actes and	7	77
-	44	400		1,000
mi	394	100		3,740
	.29	204		988
106	181	340		429
200	38	305	- 4	440

	-	Actes .	*	-	
	44	400		1,000	
PRICE.	784	386		3,740	
198	.29	354		paker -	
106	181	340		4296	
2000	385	301	*	HI.	

Industry regulations and guidelines

- NSF* International, develops standards and provides product certification. Many products in the F&B Industry require NSF approval
- The Beverage Industry has unique requirements

Multiple cleanings, frequent high-pressure wash downs with caustic anti-bacterial cleaning agents, very high or low temperatures, expose products to harsh environments and can impact the bottom line

Products should not contaminate the processed product with any material that could be affect the consumer's health if ingested

*NSF: National Sanitation Foundation

NSF - White Book

White BookTM - Nonfood Compounds Listings Directory

These Listings were Last Updated on **Tuesday**, **March 04**, **2008** at 8:00 PM Eastern Standard Time. Please contact NSF International to confirm the status of any Listing, report errors, or make suggestions.

Warning: NSF is concerned about fraudulent downloading and manipulation of website text. If you have received this listing in hard copy, always confirm this certification/listing information by going directly to http://www.nsf.org/usda/psnclistings.asp for the latest most accurate information.

NSF-Registered Proprietary Substances and Nonfood Compounds

SKF MAINTENANCE PRODUCTS

Cert-Link[®]
(Click here to visit this Company's Website)

LDTS 1	139739 H1
LGFA 0	139518 HI
LGFA 00	139517 HI
LGFA 1	139519 HI
LGFA 2	139516 HI
LGFB 2	137587 <u>H1</u>
LGFL 1	137588 <u>H1</u>
LGFP 2	128004 <u>H1</u>
LHFP 150	136858 <u>H1</u>

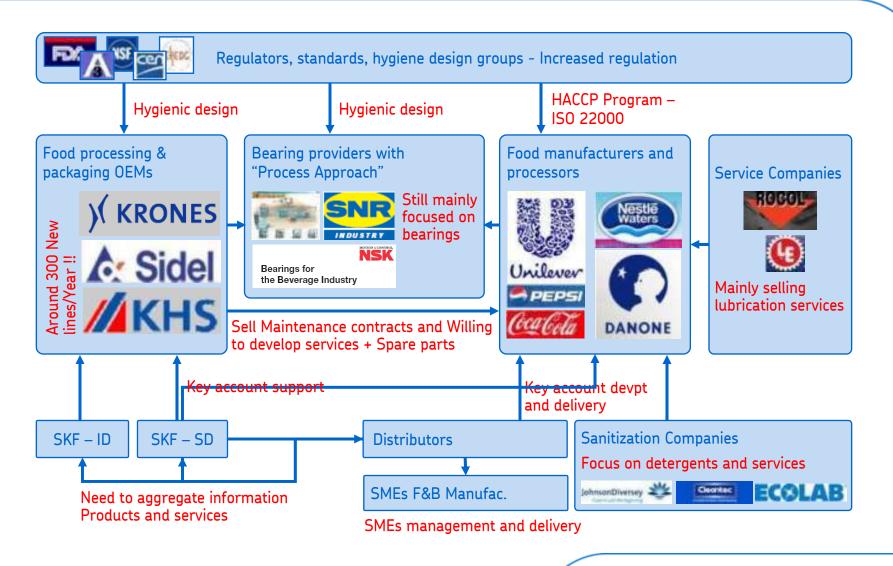
Strong Market Growth

- Beverage Consumption to grow by 18% in the next 6 years*
- Bottled Water Consumption to grow by 40% in the next 6 years*
- Pet Packaging will double by 2015. (23% to 41% of all packages)**
- Glass will decrease by 2015. (33 to 21% of all packages)**

^{*} Source: Canadean - Global Beverage Consumption - April 2007

^{**} Source: PCI, Canadean, Mercer, GDA, Tetra, Krones

Main categories and related packaging


Category/Packaging type	Glass	PET*	Can	Carton
Water	X	X	X	
Carbonated Soft drinks	X	X	X	
Non carbonated Soft drinks	X	X		X
Alcoholic drinks	X		X	
Wine	X			X
Dairy	X			X

X = Combination is common

^{* =} PET is the name used for Plastic bottles and means Polyethylene Terephtalate

Beverage Landscape

Main competitors in the industry

- Traditional; Freudenberg, Trelleborg, Dowty, Busak & Shamban
- Niche; John Crane (mechanical)

- Traditional; INA/FAG, NSK/RHP, Dodge, Koyo, NTN, Fenner, Rexnord
- Niche; Igus,
 Systemplast, Askubal,
 Cobra, Sealmaster,
 EDT, SMB Sapporo

- Traditional; Bijur, Lincon, Rocol, Perma
- Niche; Kluber, Fuchs, Ecolab, Diversey
- Service; Rocol

Seals

Bearings and units Lubrication systems

- Traditional; Rockwell Automation, Bently Nevada
- Niche: -

Mechatronics

Services

• All platforms : None

- Traditional; Siemens, Rockwell, CSI, Bently, +Specific Como (01db, PrufTechnic)
- Niche; Johnson Diversey, Ecolab

Beverage Market - OEM

Market is dominated by 3 players: Krones, Sidel, KHS

- Krones. 9000 Employees
- Sidel, part of Tetra Laval, 5700 Employees –
 150 new lines per year
- KHS*, 4500 people, has already sold 6500 filling machines

Krones, Sidel, KHS provide engineering, installation, commissioning and services

Source: Krones, Sidel, KHS

KHS AG, Dortmund - was established in 1993 from a merger of Holstein & Kappert AG of Dortmund, founded in 1868, and Seitz-

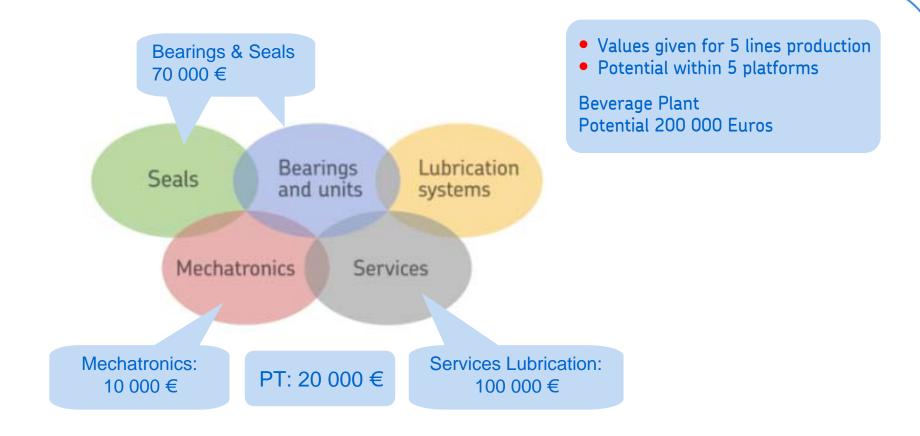
Werke GmbH

Beverage Market - Aftermarket

Market is dominated by global players: Nestle, Danone, SAB Miller, Heineken

- Water is dominated by Nestle 103 Bottling Plants and Danone –
 65 Bottling Plants
- Beer is dominated by Carlsberg, Heineken, Scottish & Newcastle,
 InBev and SAB Miller 128 Breweries + 41 Bottling plants
- Soft Drink is dominated by Coca-Cola Using Subcontractors to bottle like Femsa in LAM with 31 plants, Pepsi Co, Unilever, Cadburý
- Dairy Market players are Parmalat, Fonterra, Lactalis, Nestle

Opportunities in beverage industry


	Bearing & units	Services	Lubrication	Mechatronics	Seals
In portfolio	Yes	Yes	Yes	Few	Few
Potential	Medium	Very High	Very High	Low	High
Comments	Low volumes but low reliability	Key is AEO - MSR, ODR, MaPro, training & IMS	Lubrication is key % in tasks and impact reliability	Labour and efficiency - Invest in auto – to incl. PT	Contaminati on is a key issue

AEO is priority

- Producers have strong pressure for efficiency
- Rotating equipment key reasons for unplanned stops
- Low engineering skills -> training & outsourcing
- SKF high technical competence to deliver AEO is a key
- Diverse relative low competition

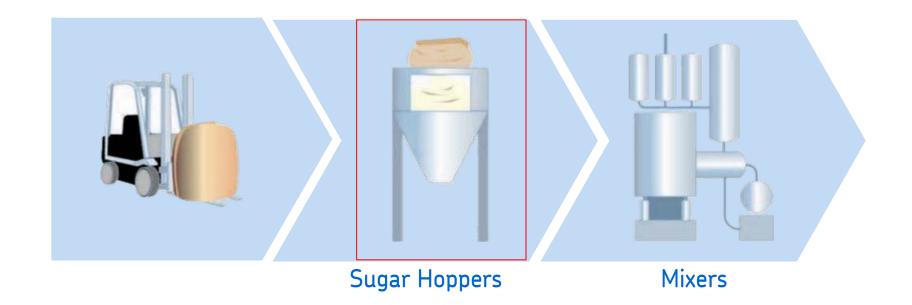
Potential in beverage plant

Please only consider this as an indication an subject to variation, depending on sub-process, sales approach, customer situation...



Beverage Process

Inside a beverage plant



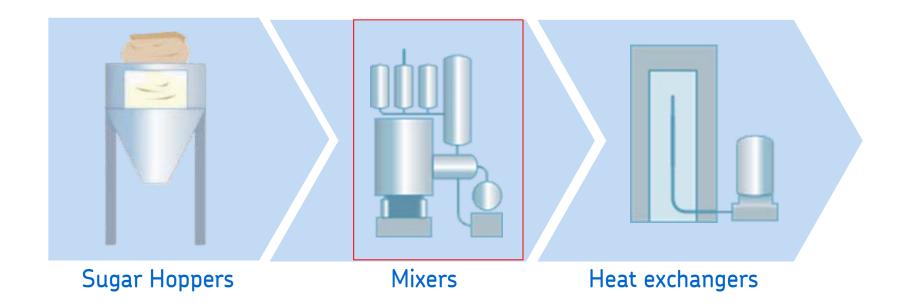
Beverage Process

Sugar Hoppers

Sugar Hoppers - Function and Environment

- Sugar is with Water the major raw material
- Off-loaded by forklifts trucks for processing
- Sugar is conveyed by a screw conveyor
- Sugar is a very agressive product for seals

Liquid and Gas are often delivered through piping systems


Sugar hoppers – Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Ingress of Sugar to motor and gearboxes	 Unplanned stops due to bearing failure Risk of contamination (food/bearing) Cost of labour and regrease due to frequent re- grease 	 Seals Condition	Line efficiency Waste cost Hygiene Safety

Go to Process Map

Mixers

Mixers - Function and Environment

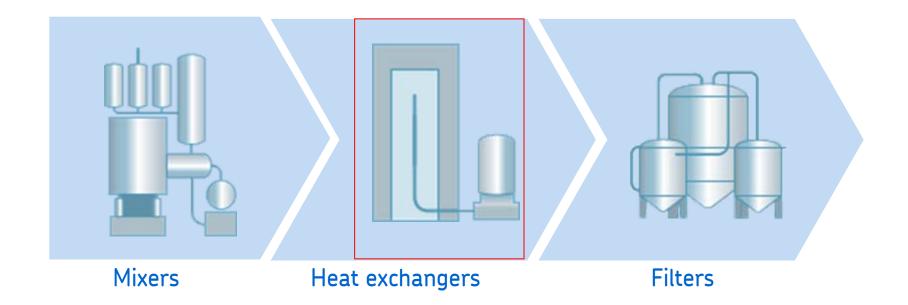
- Mixing sugar or other solids with water is common for soft drink
- In soft drink process, sugar is mixed with water to have a first mix. The temperature at this stage is around 85 °C

CSD - Continuous Sugar Dissolver

The Continueus Super Dissolver pives you optimal fleedolity and offers great cost soving potential

The CSO is a fully actionate suggesting the design group is the design group in county for interpretate with any of the CSO is suggested with any of the CSO is suggested with any of the CSO is suggested with a county and county and county and county and county and county of the first first who with a county and county of the CSO is suggested by Table 1994. The contribution of a county will be county to the CSO is suggested by the county of the CSO is suggested by the county of the contribution of many only high quality interested with special county of the county of the

The standard capacity range span 5,000 - 10,000 Uh.

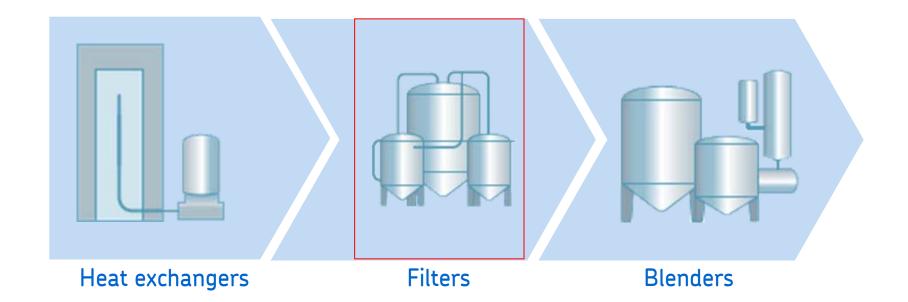

Mixers – Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Ingress of Detergents, Water and Sugar	 Unplanned stops due to bearing failure Risk of conta- mination (food/bearing) Cost of labour and regrease due to frequent re- grease 	 Seals Condition	Line efficiency Waste cost Hygiene Safety

Go to Process Map

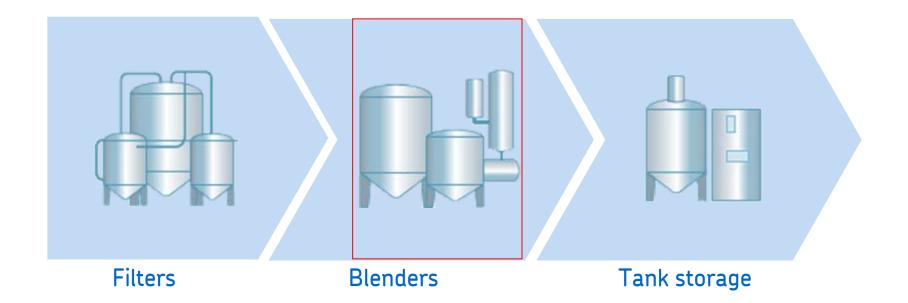
Mixers – Typical issues

Heat Exchangers - Function and Environment

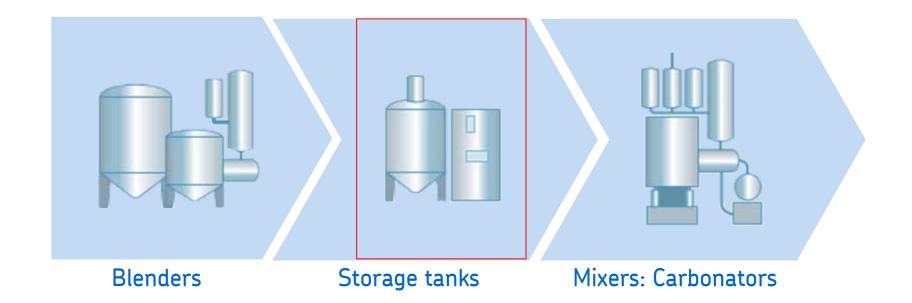

- To avoid foam formation, the mix is cooled-down. This operation is obtained using heat exchangers
- Heat Exchangers are also used to heat or pasteurize in certain applications

Filters

Filters - Function and Environment


- Filters function is to remove impurities from the syrup, but also from the air, water
- Technology can be based on Resins,
 Membranes, Charcoal filtration, plate filtration... depending on impurities
- Charcoal is carbon. Activated charcoal is charcoal that has been treated with oxygen to open up millions of tiny pores between the carbon atoms
- De-carbonation filters (plate filters) will be used in case of charcoal filtration

Filters



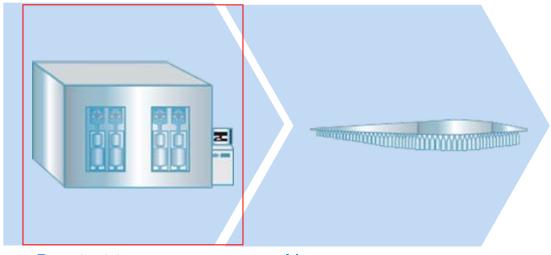
Blenders - Function and Environment

- Blenders are used to mix different products, like sweetener, syrup, water of flavours
- Many variations on blenders types depending on ingredients to blend

Storage Tanks

Storage Tanks - Function and Environment

- Base syrup is stored in tanks, continuously mixed, this is an accumulation zone to give flexibility in the "packaging areas"
- On top of these tanks, motors and gearboxes drive impellers to ensure a good homogeneity quality
- Pumps are massively used to transfer fluids from tank to tank
- For hygiene reasons, detergents spills onto gearboxes and leads to oil leakage on tanks and floors


Storage Tanks - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Ingress of water + detergents on: • Motor and gearboxes • Pumps	 Lubricant pollution leads to frequent refill Seals damage leads to lubricant leakage which is unhygienic and leads to frequent cleanings Unplanned stops 	SealsCondition Monitoring	Line efficiency Foreign body prevention Waste Hygiene Safety

Go to Process Map

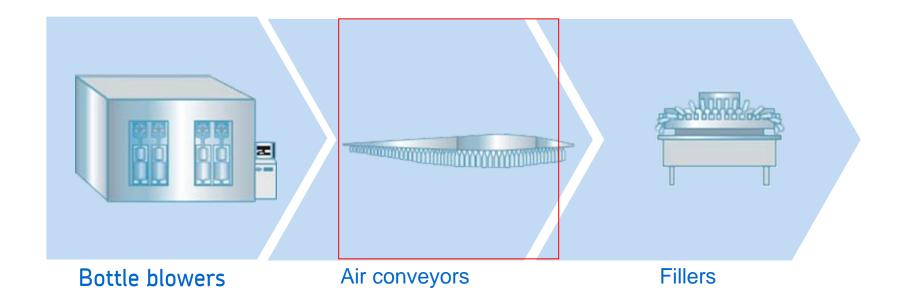
Bottle Blowers

Bottle blowers

Air conveyors

Bottle Blowers - Function and Environment

- Plants producing beverage in pet bottles are blowing their bottles on site
- The preform is first injection molded
- The preform is then reheated and blew in a second machine to make the bottles. The moulds rotate and air pressure is injected with hig temperature into the mould and expands the preform



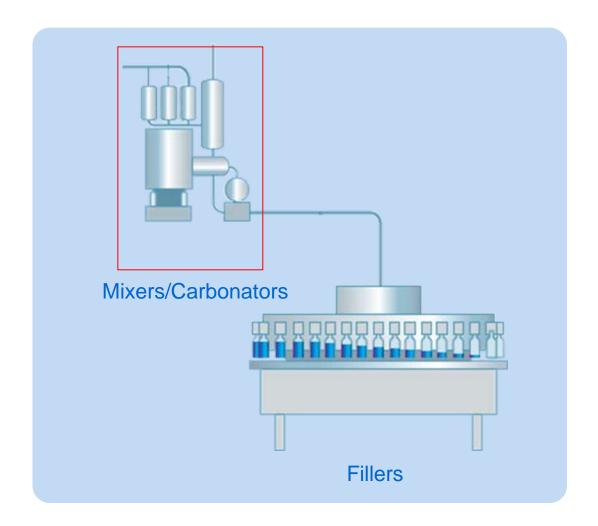
Bottle Blowers - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Lubrication is impossible when machine in operation	 Unplanned stops Too much planned stops for lubrications tasks 	 Lubrication systems Distribution systems 	Line efficiency

Bottle Blowers

Air Conveyors - Function and Environment

- Pet bottles are conveyed after blowers using air conveyor systems to rinsers before filling
- Bottles are picked up and controlled by the neck ring on the bottle. They are then transported single file using pressurized air,
- Line speeds of up to 1200 bpm (Bottles per minute) are attainable
- Pressure in each zone of conveyor can be regulated at each blower. This will control the speed range of the section, and allows each zone to be treated separately as required



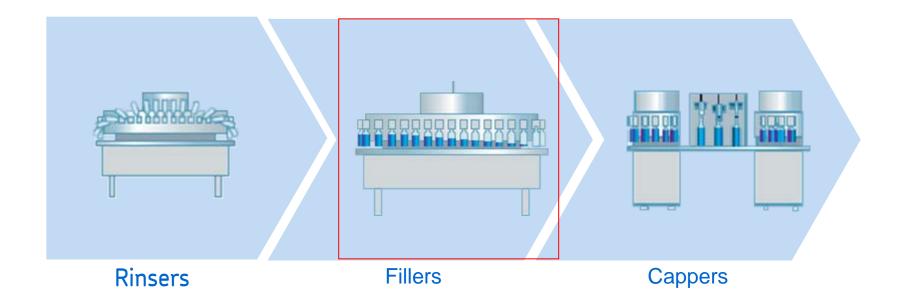
Air conveyors - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Unbalance and Misalignment on blowers	 Unplanned stops Energy consumption by overheating Grease consumption 	 Lubrication systems Distribution systems 	Line efficiency

Mixers/Carbonators

Mixers/Carbonators - Function and Environment

- The aim of this important process is to dissolve a quantity of carbonic gas into different products to obtain a carbonated final product
- A carbonator combines CO2 gas with the liquid to be carbonated. Two main categories; those that carbonate water only and those that carbonate the finished product mixture of syrup and water. These are sometimes coupled with coolers, often referred to as carbo-coolers



Air conveyors - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Ingress of Detergents, Water and Sugar	 Seals damage leads to risk of contamination (food/bearing) 	 Seals Speedi Sleeves 	Line efficiency Waste cost Hygiene Safety

Rinsers/Fillers

Rinsers/Fillers - Function and Environment

- Final step before capping, topping and packing. The aim is to fill the bottles or cans with the final product
- Several technologies in use:
 - Volumetric filling process using dosing tank
 - Gravimetric filling system is used mainly for water
 - Mechanical counter pressure with electro pneumatic control system
- These machines include several star wheel gearboxes, below transported products, working under severe environmental conditions, like water, frequent wash downs with cleaning agents

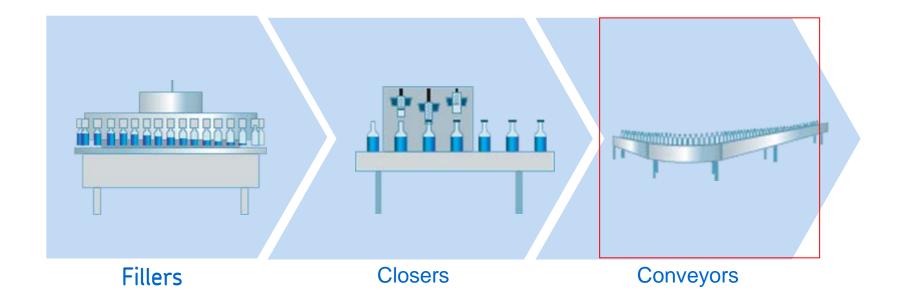


Rinsers/Fillers - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Ingress of water and sugar on star-wheel gearboxes	 Unplanned stops Lubricant pollution leads to frequent refill 	SealsConditionMonitoring	Line efficiency Waste
Ingress of water and sugar on Slewing Bearings	 Unplanned stops Lubricant pollution leads to frequent re-grease 	SealsCondition MonitoringLub. Systems	Line efficiency Waste

Cappers

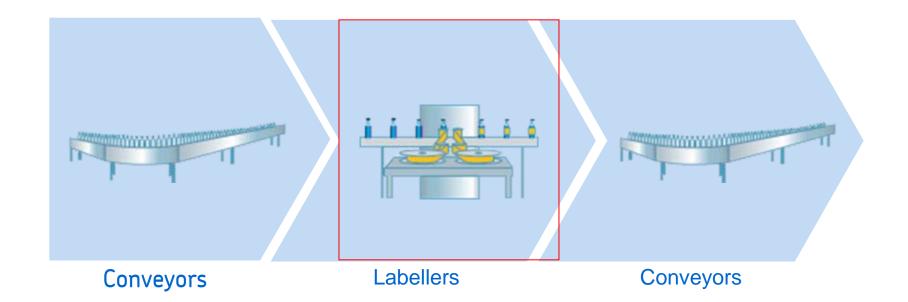
Cappers - Function and Environment


- The bottles are closed, ensuring a good product shell life
- This step is often critical in the process, as it can stop a plant in case of unplanned downtime
- Depending on the type of packaging, several types of machineries. Cans are seamed, bottles are sealed with metallic caps, plastic caps or cork

Conveyors

Conveyors - Function and Environment

- Used to convey bottles form assets to assets
- Several technologies and chains materials depending on bottles material
- Accumulation areas designed due to different asset speeds in the process
- Wet lubrication largely used to reduce friction
- Frequent cleanings



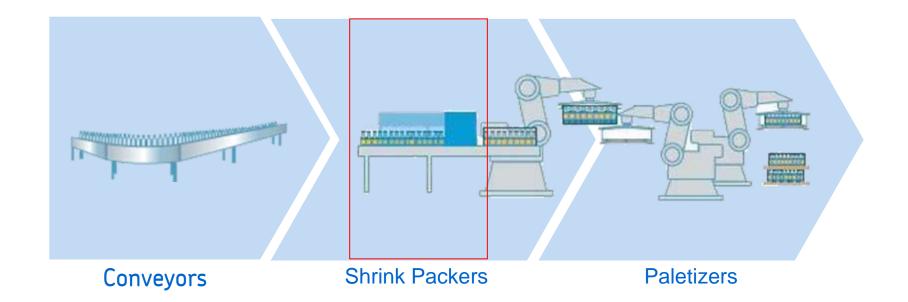
Cappers - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Water & lubricant consumption & waste	 High cost of water + lubricant consumption Cost for purification and recycling (90.000 Water Lt + 320 Lubricant Lt / Month) 	SKF Dry-Lubrication	Line efficiency Foreign body prevention* Waste water
Moisture on package	Non quality costs + customer complaint		Hygiene
Organic development	Lubrication system failures (plugged nozzles)Lack of lubrication increase wear		Safety
Wet and slippery floors	Personal injuries (37% of all major injuries with more than 3 days off are slips and trips)		
Additional fixtures	 Additional dripping pans cost Increase area of potential micro-biological growth 		
Micro-biological growth	 Risk of bacterial growth in water and humidity can lead to contamination Increase needs of frequent cleanings 		
Corrosion on Housings	Corrosion leads to replacement costs	SKF Y-Units L range	FBP * , Waste
Bearing grease washout	Grease leakage on floors + Frequent re- grease	SKF Y-bearings	Safety, Waste

Labellers

Labellers - Function and Environment

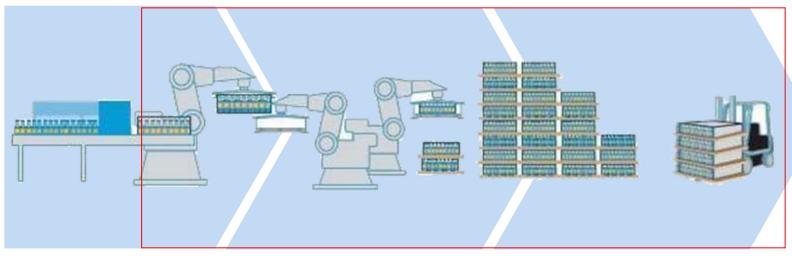
- Bottles have to be labelled before final packaging
- Labeling stations in Water process are usually washed once per week and labeling is one of the critical components in a bottling line



Labellers - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Ingress of Water in bottle supports	 High corrosion leads to unplanned stops 	 Stainless Steel bearings Solid Oil Compound bearings 	Line efficiency

Shrink Packers


Shrink Packers - Function and Environment

- Shrink packs are primarily made from Polyethylene film to protect single collations of products such as cans, bottles
- Once the film has passed through the shrink tunnel the product collation is held securely within the tray. The pack is extremely strong and ideal for palletizing for transportation from manufacturer to the wholesaler/supermarket. About 70 percent of supermarket products arrive using this method
- Various designs and OEMs

Paletizers

Shrink Packers

Paletizers

Paletizers - Function and Environment

- Large diversity of assets.
 Automation is extremely important and common
- Depending on volumes, type of packaging, different technologies will be used. Robots are now intensively used in these areas

Paletizers - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
High shocks and loads leads to housing failures	 Housing failures and unplanned stops 	 Maintenance free Stainless Steel housings 	Line efficiency
Lubrication is impossible when machine in operation	 Unplanned stops Too much planned stops for lubrications tasks 	Lubrication systemsDistribution systemsMapro Lub.	Line efficiency Safety Waste
Poor chain lubrication	• Unplanned stops	 Mapro chain lub LHFP 150 + LAGD, LAGE F&B Lub System 	Line Efficiency

Auxiliaries Equipment

Energy generation

- Beverage plants require electrical and thermal energy for the process
- Electricity is needed for lighting, for process control of the installation, for heating, for refrigeration and as the driving power for machinery. It is usually generated and supplied by utility companies
- Thermal energy is needed for heating processing lines and buildings. The heat generated by the combustion of fossil fuels is transferred to the consumers by means of heat transfer media, which, depending on the requirements, are steam, hot water, air or thermal oil
- The basic boiler/generator design generally consists of a combustion chamber, where fuel combustion takes place. The heat is initially transferred by radiation, followed by a tubular heat exchanger for heat transfer by convection

Auxiliaries Equipment

Compressed Air Generation

- Compressed air is generated to run simple air tools, e.g. for pneumatic transfer, or for more complex tasks such as pneumatic controls
- Widely used on manufacturing and packaging lines, oilfree compressed air is required in the FDM sector. The air used has to be of food quality. This is achieved by passing it through several filters at the outlet of the compressor
- Air Generation is a high energy consuming activity

Gearboxes - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Water ingress	 Water content in oil Corrosion to bearings, gears & shafts (typical 1 year life cycle) 	SealsComoEndoscopes	Line efficiency Product quality
Condensation	Water in oilReduced lubrication propertiesCorrosion	• Seals	Line efficiency Product quality
High pressure cleaning	Breathing in boxDetergent creepSeal failureDirect water ingress	• Seals	Line efficiency Product quality
Refurbishment	Costly and difficult replacementManual labour costs	Services	Line efficiency Product quality
Requirement to keep spare gearbox	Additional cost		Line efficiency Product quality

Centrifugal Pumps (Fluid Transportation) - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Critical assets (A) with low reliability (MTBF)	Unpredictable failures (due to typical failure causes, as lubrication problems) can cause process stoppages, and even product losses	ComoSealsRSH DGBB	Line efficiency Waste
Poor fitting and grouting erosion	Low rigidity of the system increases effects of vibrations due to resonance reducing bearings and seals life		Line efficiency Waste
High pressure cleaning	 Water ingress to the motor connections Water ingress to the bearings and motor leading to lubrication problems in bearings 		Line efficiency Waste
"Dirty" product	Contaminants in the product can lead to unbalance and erosion of impeller and axial seal		Line efficiency
Poor maintenance and operation practices	 Pumps operate in a out of alignment leading to lower life of parts, and increase energy consumption Product connections can introduce tensions in the pump, affecting life of parts Operation far from BEP can lead to cavitation affecting reliability 	AlignmentTrainingsThermalCamera	Line efficiency Waste Energy

Centrifugal Pumps (Fluid Transportation) – Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Operation regime	 Frequent starts – stops Not constant flow does not allow an even operation near BEP Not constant composition of products (different density, viscosity, etc) affects pump operation 	• Como	Line efficiency Product quality Foreign Body Prevention
The pump operation regime can affect the product	Uneven flows, high tangential forces in the impeller, and cavitation, can affect the product quality	• Como	Line efficiency Product quality
Erosion of pump	Particles from pump parts (impeller, seal, housing,) erosion can contaminate the product	• Como	Foreign Body Prevention

Main centrifugal pumps features:

- Typical duties: raw juice transport; mixing;
- Various sizes, but typically small (around 20 kW); mainly direct drive coupling, or moto-pumps; larger pumps can use frecuency converter. Mounted horizontal or vertical
- Special impeller design (to avoid product stress)
- Cleanable seals; large internal rounding
- Easy (fast) maintenance; standard spare parts (modularity)
- Low power consumption and noise levels

General service Pumps - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Poor maintenance and operation practices	 Pumps operate with misalignment → lower life of parts, and increased energy consumption Product connections can introduce tensions in the pump, affecting system life Operation far from BEP can lead to cavitation affecting reliability In outsourced maintenance contracts pumps are often out of the scope still under customer responsibility 	 Alignment tools and Trainings Como 	Line efficiency Product quality Energy savings
Erosion of grouting	 Uneven flows, high tangential forces in the impeller, and cavitation, can affect the product quality 		Line efficiency

Main service pumps features:

- Typical use: service water; firefighting; waste water; vacuum pums
- When large with direct drive coupling; can be single or multi-stage; in some applications can use frequency converter. Submersible version(for water mainly)
- Normally grouped, not in the same production facility, and have dedicated maintenance (Auxiliary Systems or Service staff)

Process and Air conditioning Fans - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Product stick on fan blades	Unbalance		Line efficiency
Variable speeds	 Many frequencies in the vibration "signature" of the system → rigidity losses or degradation of anti-vibration feet, can lead to high vibration due to resonance 	• Como • ODS	Line efficiency
Poor maintenance practices	 Belts failures PT system not properly sized → higher energy consumption and non standard spare parts 	 PT products + TMEB Trainings Ultra Sonic Leak Detectors - Mapro 	Line efficiency Energy Savings
Poor quality of components	 Low quality PTP to reduce purchasing costs, can lead to failures of the system Poor performance of sealing systems, will lead to contamination in bearings 	PT products	Line efficiency

Fan main features

- · Process fans are common in Dry Milk plants, Flour, Pet food
- Conditioning fans are common in cooling towers, panel fans for general unducted ventilation
- Can be considerable large in size. Usually motors don't have frequency converters, but starting systems

Conveying Fans - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Sticked Product on fan blades	Unbalance	• Como	Line efficiency Energy savings
Difficult to detect failures	Failures are detected only when power loss affects the process	• Como	Line efficiency
Requirement to keep spare pumps and spare parts	Additional cost		Waste

Main features for conveying fans:

- Typically small size with direct drive coupled fans. See turbine blowers used in Air Conveyors for PET bottle conveying between the blower station and the filling station
- Usually part of the main production process

3

Hygiene and Automation

Hygiene in Beverage Industry

CIP/SIP Processes
For the Beverage
Industry

Hygiene in Beverage Industry

Clean

Free from dirt, stain, or impurities

Sanitized

Free from elements that endanger health, reduction of micro organisms

Disinfect

Refers to inanimate objects and the destruction of all vegetative cells (not spores)

Sterilize

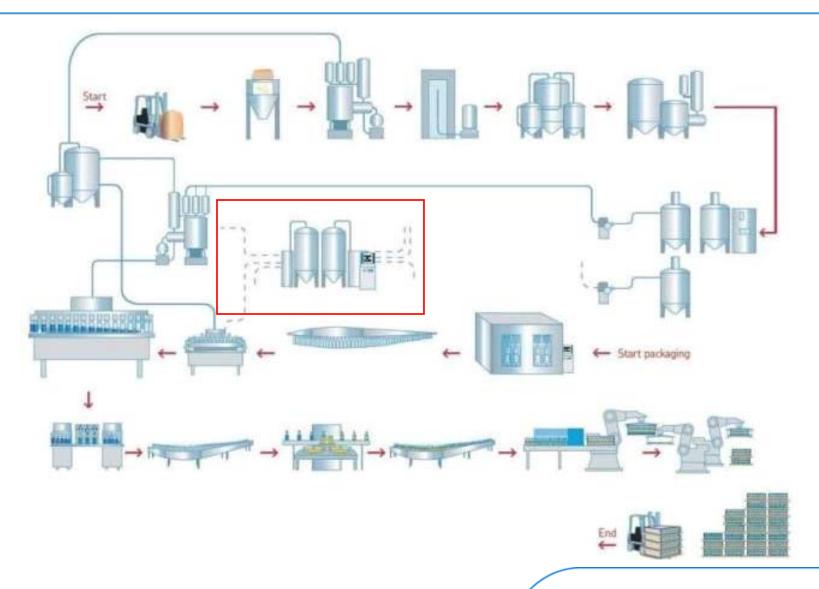
Refers to the statistical destruction and removal of all living organisms

CIP/SIP processes

Manually

Buckets and brushes, hoses, foams, HPLV-Systems (High Pressure Low Volume)

Mechanically


COP: (Cleaned Out of Place); System uses an agitated tank to clean components disassembled and placed in the tank, or the rinsing is by hand

CIP: (Clean In Place); Accomplished via chemical action based on spray or pressure recirculation of the flush, wash, and rinse solutions under controlled conditions of time, temperature and chemical concentration. It involves the washing of processing and storage tanks, the piping systems and integrated equipment

SIP: (Sterilization In Place); the objective is to sterilize all sterile product contact equipment at its point of use to eliminate or reduce the need for aseptic additions or connections

CIP Systems

Chemical agents used

Chemical	Example	Concentration	Temperature [°C]	Time [min]
Chlorinated Alkalies	Mild solution of caustic soda	max. 0,5 %	55 – 70	5 – 20
Acidified Rinse	Post rinse, fresh water, acid sol.	pH 5,5 - 6,0	RT	
Strong Alkalies	Caustic soda	0,5 - 5 %	up to 90	45 – 60
Strong Acids	Phosphoric acid, Nitric acid	pH ~ 2	75 – 90	20 – 30
Sanitizer	Sodium hypochlorite	0,02 %	Cold	2+
Hot water			80 – 90	
Steam			~ 130	

CIP Pumps - Typical issues

Issues	Implications	SKF Capabilities	Drivers Affected
Chemical attack of CIP solutions	Failure of sealsWear of impeller	ComoSeals	Line efficiency Product quality
Poor fitting and grouting erosion	 Low rigidity → increased effects of vibrations due to resonance, reduces bearings and seal life 	• Como	Line efficiency Product quality
High pressure cleaning	 Water ingress to the motor connections Water ingress to the bearings and motor → lubrication problems in bearings 		Line efficiency Product quality
Difficult failure condition detection between cycles	A failed pump will be detected when staring the CIP cycle, and would delay the hole process		Line efficiency Product quality
Requirement to keep spare pumps and spare parts	Additional cost	• Como	Line efficiency Product quality

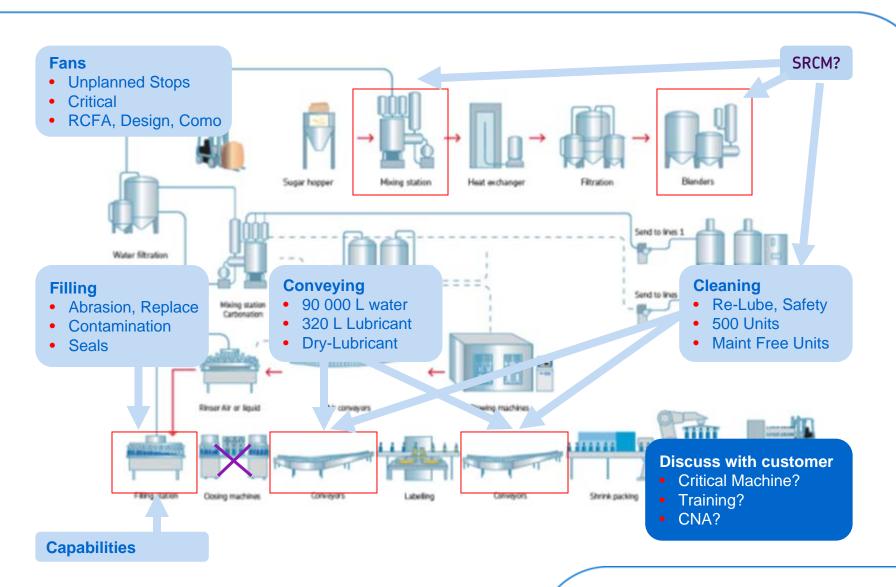
Specific features for these pumps:

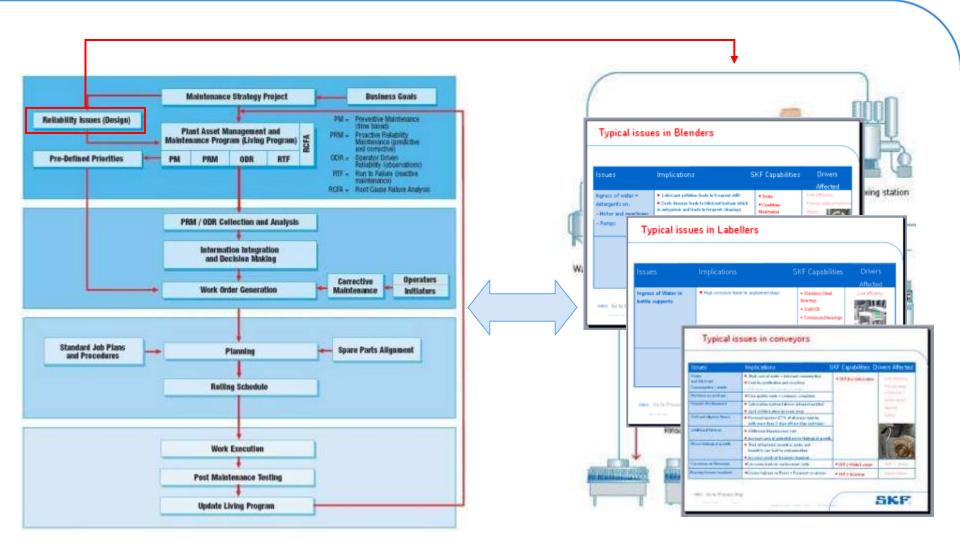
- 1 to 20 kW are normal sizes; moto-pump; no frecuency converters
- Cleanable seals; large internal roundings
- Adjustable legs (as are commonly not to fit in the ground)
- Possible to pump liquids that contain air or gases (like liquid ring pumps), to pump from a suction line partially filled with air

Hygiene in Beverage Industry

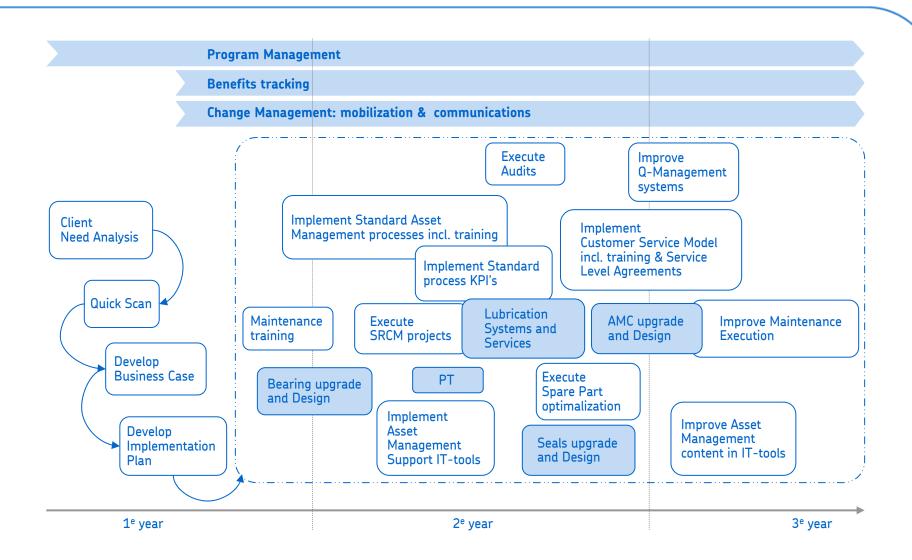
The requirements of materials are:

- Chemical resistance against the product
- Chemical resistance against the used CIP media
- Good cleanability and sterilizability surface
- Good resistance against abrasion caused by solid parts of the product
- Non toxic material Food Grade
- Installation without any dead spots (spaces)


Go to Process Map


Process approach and Summary

Process approach - Beverage Plant



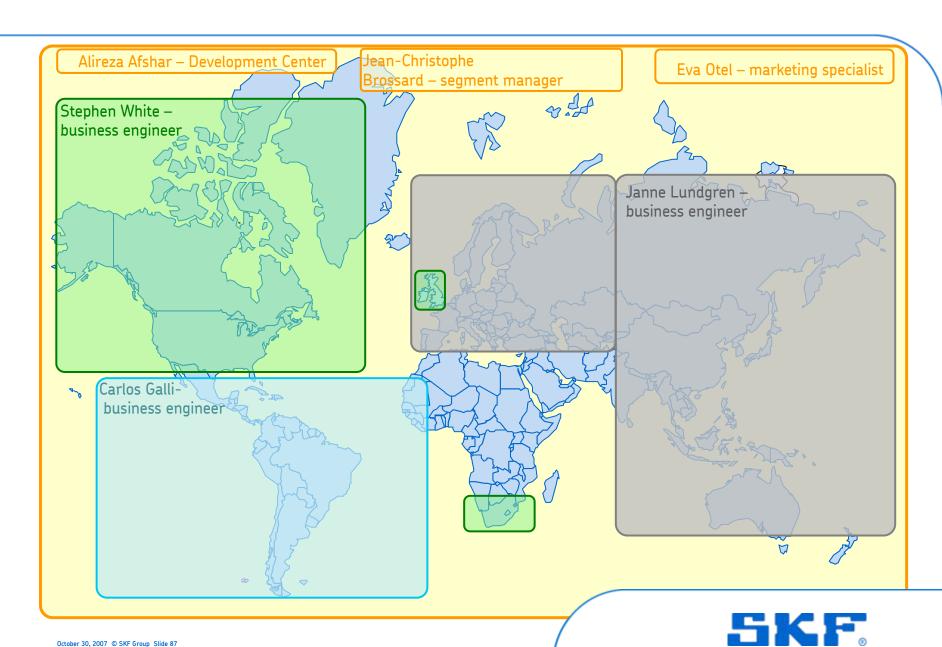
Service Approach with Process and Asset Knowledge

From CNA to Implementation

5

Segment contacts

The F&B segment and SD global KAM team



##